On ignoring the singularity in numerical quadrature

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the impact of e-readiness on ec success in public sector in iran the impact of e-readiness on ec success in public sector in iran

acknowledge the importance of e-commerce to their countries and to survival of their businesses and in creating and encouraging an atmosphere for the wide adoption and success of e-commerce in the long term. the investment for implementing e-commerce in the public sector is one of the areas which is focused in government‘s action plan for cross-disciplinary it development and e-readiness in go...

Numerical Quadrature of Fourier Transform

In some cases the function <£(£) or \pik) is given by a closed expression which is too complicated to permit a sufficiently accurate analytic evaluation of the integral for the entire range of the parameter x. In other cases 4>ik) or ^(&) may be available only in numerical form. The conventional methods of numerical quadrature (e.g., Simpson's rule) are not suitable for evaluation of the above ...

متن کامل

Numerical Quadrature: Theory and Computation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Chapter

متن کامل

On the computation of Macdonald functions by numerical quadrature

The use of Gaussian quadrature formulae is explored for the computation of the Macdonald function Kν(x) = ∫ ∞ 0 e cosh t cosh νt dt when x > 0 and ν is complex, ν = α+ iβ. It is shown that Gaussian quadrature with weight function w(t) = exp(−et) on [0,∞] is a viable approach, unless x is small and/or β large, but in combination with Gauss–Legendre quadrature, even in these latter cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1971

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1971-0301901-5